Short-chain fatty acids (SCFAs) are key molecules, produced by gut bacteria in the intestine, that are absorbed into the bloodstream and strongly influence human health. SCFA disruption and imbalances have been linked to many diseases; however, SCFAs are seldom used diagnostically as their detection requires extensive sample preparation and expensive equipment. In this work, an electrochemical sensor was developed to enable real-time…
Carboxypeptidase E (CPE) facilitates the conversion of prohormones into mature hormones and is highly expressed in multiple neuroendocrine tissues. Carriers of CPE mutations have elevated plasma proinsulin and develop severe obesity and hyperglycemia. We aimed to determine whether loss of Cpe in pancreatic beta cells disrupts proinsulin processing and accelerates development of diabetes and obesity in mice. Pancreatic beta cell-specific Cpe knockout mice (βCpeKO; Cpefl/fl x Ins1Cre/+)…
Neurexin synaptic organizing proteins are central to a genetic risk pathway in neuropsychiatric disorders. Neurexins also exemplify molecular diversity in the brain, with over a thousand alternatively spliced forms and further structural heterogeneity contributed by heparan sulfate glycan modification. Yet, interactions between these modes of post-transcriptional and post-translational modification have not been studied. We reveal that these regulatory modes converge on…
The number of somatic mutations detectable in circulating tumor DNA (ctDNA) is highly heterogeneous in metastatic colorectal cancer (mCRC). The optimal number of mutations required to assess disease kinetics is relevant and remains poorly understood. We used archival tissue sequencing to perform an in silico assessment of the optimal number of tracked mutations to detect and monitor disease kinetics in mCRC using…
Mycobacterium tuberculosis’s (Mtb) success as a pathogen is due in part to its sophisticated lipid metabolic programs, both catabolic and biosynthetic. Several of Mtb’s lipids have specific roles in pathogenesis, but the identity and roles of many are unknown. Here, we demonstrated that the tyz gene cluster in Mtb, previously implicated in resistance to oxidative stress and survival in macrophages, encodes the…
Diffuse large B-cell lymphoma (DLBCL) is cured in more than 60% of patients, but outcomes remain poor for patients experiencing disease progression or relapse (refractory or relapsed DLBCL [rrDLBCL]), particularly if these events occur early. Although previous studies examining cohorts of rrDLBCL have identified features that are enriched at relapse, few have directly compared serial biopsies to uncover biological and…
Glutamate N-methyl-D-aspartate receptor (NMDAR) is critical for promoting physiological synaptic plasticity and neuronal viability. As a major subpopulation of the NMDAR, the GluN2B subunit-containing NMDARs have distinct pharmacological properties, physiological functions, and pathological relevance to neurological diseases compared with other NMDAR subtypes. In mature neurons, GluN2B-containing NMDARs are likely expressed as both diheteromeric and triheteromeric receptors, though the functional importance…
Intracellular symbionts often undergo genome reduction, losing both coding and non-coding DNA in a process that ultimately produces small, gene-dense genomes with few genes. Among eukaryotes, an extreme example is found in microsporidians, which are anaerobic, obligate intracellular parasites related to fungi that have the smallest nuclear genomes known (except for the relic nucleomorphs of some secondary plastids). Mikrocytids are…
Purpose: Histone deacetylase (HDAC) inhibition has been shown to induce pharmacological “BRCAness” in cancer cells with proficient DNA repair activity. This provides a rationale for exploring combination treatments with HDAC and poly-(ADP-ribose)-polymerase (PARP) inhibition in cancer types that are insensitive to single-agent PARP inhibitors. Here, we report the concept and characterization of a novel bi-functional PARP inhibitor (kt-3283) with dual…
Calcins are peptides from scorpion venom with the unique ability to cross cell membranes, gaining access to intracellular targets. Ryanodine Receptors (RyR) are intracellular ion channels that control release of Ca2+ from the endoplasmic and sarcoplasmic reticulum. Calcins target RyRs and induce long-lived subconductance states, whereby single-channel currents are decreased. We used cryo–electron microscopy to reveal the binding and structural effects…